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Abstract
The most striking phenomenon in the dynamics of granular gases is the
formation of clusters and other structures. We investigate a gas of dissipatively
colliding particles with a velocity dependent coefficient of restitution where
cluster formation occurs as a transient phenomenon. Although for small impact
velocity the particles collide elastically, surprisingly the temperature converges
to zero.

1. Introduction

Granular gases, i.e. gases of dissipatively colliding particles in the absence of external forces,
reveal a variety of interesting phenomena, such as characteristic deviations from the Maxwell
distribution [1–3], overpopulation of the high energy tail of the distribution function [4],
anomalous diffusion [5, 6], and others (see [7–9] for an overview). However, the most striking
phenomenon which distinguishes granular gases from molecular gases is the self-organized
formation of spatio-temporal structures such as clusters [10] and vortices [11].

The loss of mechanical energy of dissipatively colliding particles i and j is characterized
by the coefficient of restitution, which relates the normal component of the relative velocity
before a collision, g, to that after, g′:

ε ≡ g′

g
= − �v′

i j · �ei j

�vi j · �ei j
, �ei j ≡ �ri − �r j

∣
∣�ri − �r j

∣
∣

(1)

with �vi j ≡ �vi − �v j and with �v ′
i j being the corresponding post-collision value. Frequently it

is assumed that the coefficient of restitution is a material constant; however, this assumption
contradicts experiments [12] and disagrees with a dimension analysis [13, 14]. Instead, ε is a
function of the impact velocity g.

The coefficient of restitution can be obtained by integrating Newton’s equation for the
collision. The elastic component of the contact force for spheres of diameter σ is given by
Hertz’ law F (el) = Bξ3/2, with ξ(t) ≡ σ − ∣

∣�ri − �r j

∣
∣ and B(σ ) being the elastic material

parameter [15]. Assuming viscoelastic material properties, the dissipative part of the contact
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force reads F (dis) = A
√

ξ ξ̇ [16–18] with the dissipative material constant A(σ ). Integration
of Newton’s equation of motion yields [14, 19]

εv(g) = 1 − D1g1/5 + D2g2/5 ∓ · · · , (2)

where the coefficients D1/2 depend on the elastic and dissipative particle material properties
and on the radii of the particles (for details see [19]).

The temperature of homogeneous granular gases in the absence of macroscopic flows
can be defined as the mean kinetic energy of the particles. Due to dissipative collisions the
temperature decays persistently and, therefore, the thermal velocity vT(t) ≡ √

2T (t)/m decays
too. For vanishing temperature the particles collide elastically, i.e., limT →0 εv = 1. Since the
formation of clusters in granular gases is a consequence of dissipative particle collisions the
question arises whether clusters may occur and persist for gases of viscoelastic particles.
The linear stability analysis of the hydrodynamic equations of such gases [20, 21] as well as
molecular dynamics simulations and the numerical solution of the hydrodynamic equations [21]
support the hypothesis that the cluster state is only a transient phenomenon. The analysis is,
however, restricted to small inelasticity which is the precondition of equation (2). Moreover, the
clusters that have been observed in gases of viscoelastic particles always grow until they reach
the border of the periodic system [21]. Although we believe that the dissolution of clusters
is an inherent property of the system, it is not evident how it is affected by the unphysical
self-interaction of clusters via the periodic boundary. Therefore, it is desirable to study a
granular gas with a simplified collision model which demonstrates the most essential property
of the restitution coefficient, limg→0 ε(g) = 1, but nevertheless is not affected by unphysical
influences of the boundary conditions.

2. Model

The molecular dynamics of force-free granular gases of viscoelastic particles with periodic
boundary conditions is problematic, due to the emergence of system size clusters in the long
time behaviour. Therefore, in this paper we assume a coefficient of restitution with an extremely
simplified impact velocity dependence: the particles collide with a constant coefficient of
restitution ε∗ if the impact velocity exceeds a certain value g∗, and otherwise they collide
elastically:

ε(g) =
{

ε∗ for g > g∗

1 for g � g∗,
(3)

where 0 < ε∗ < 1, that is, the inelasticity of particle collisions need not be small.
A granular gas which is initialized at uniform number density n stays homogeneous during

the first stage of its evolution, called the homogeneous cooling state. In this regime the kinetic
energy of the gas may be characterized by the granular temperature T , defined in terms of the
second moment of the velocity distribution function f (v):

d

2
nT ≡

∫
mv2

2
f (v) d�v, (4)

(m is the mass of particles and d is the dimension). For ε = constant the decay of the
temperature due to inelastic collisions is described by Haff’s law TH(t) [22], whereas for gases
of viscoelastic particles it is given by Tv(t) [19]:

TH(t) = T0

(1 + t/τH)2 , Tv(t) = T0

(1 + t/τv)
5/3

, (5)

where τH and τv are the relaxation times [23].



Transient clusters in granular gases S2707

1

0,8

0,6

0,4

0,2

0
0 1 2 3

f(
c)

scaled velocity c

0

-2

-4

-6

-8

0 0.5 1 1.5 2 2.5 3

Figure 1. Scaled velocity distribution f (c) at times t1 < t2 < t3 where vT(t1) � g∗ (circles),
vT(t2) ≈ g∗ (squares) and vT(t3) 
 g∗ (plus symbols), together with a Maxwellian (full curve).
Inset: the same data as ln( f (c)/c). The full curve shows a parabola for comparison (shifted for
better visibility).

Equations (5) were first derived with the assumption of a Maxwell distribution; however,
their functional form remains conserved also when we take into account the known deviations
from the Maxwell distribution [1–3]. Before investigating the temperature decay let us first
check whether the assumption of an approximative Maxwell distribution is justified for our
case too.

Starting at a certain temperature which corresponds to a thermal velocity vT � g∗, almost
all collisions occur with ε∗; hence, in this range, we expect to find a velocity distribution close
to a Maxwellian with the small deviations mentioned above. At late times when vT 
 g∗
the majority of the collisions occurs elastically. In this range we expect, therefore, a Maxwell
distribution too, just as for molecular gases. In the intermediate range vT ≈ g∗ a sizable part
of the collisions, i.e. collisions between slow particles, occur elastically, whereas fast particles
mainly undergo dissipative collisions. Therefore, it is not a priori clear whether the distribution
function is close to the Maxwell distribution.

We have simulated a 2D granular gas of N = 105 particles of unit mass which collide
according to equation (3). The parameters are: ε∗ = 0.6, g∗ = 0.1 and the initial temperature
is T (0) = 1 which corresponds to an initial thermal velocity vT(0) = √

2 � g∗. Figure 1
shows the scaled velocity distribution function f̃ (c) defined by

f (�v, t) = n

vd
T(t)

f̃ (�c) , �c ≡ �v
vT(t)

, (6)

for the three cases mentioned together with the Maxwell distribution. From the results we
conclude that even in the transition region vT ≈ g∗, the Maxwell distribution is a good
approximation.

3. Temperature decay

Using the standard approach based on the Boltzmann equation (e.g. [1–3, 23]) with the
assumption of a Maxwell distribution we obtain

dT

dt
= − 2

d
g2(σ )σ d−1nvTT µ2, (7)

where g2(σ ) is the contact value of the pair distribution function,

g2(σ ) = 1 − 7η/16

(1 − η)2
with η = 1

4 nπσ 2, (8)
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for a two-dimensional gas and in three dimensions

g2(σ ) = 2 − η

2(1 − η)3
with η = 1

6 nπσ 3. (9)

The second moment of the dimensionless collision integral reads [3, 23]

µ2 = 1
4

∫

d�c1

∫

d�c2

∫

d�e �(−�c12 · �e) f̃ (�c1) f̃ (�c2)(1 − ε2) |�c12 · �e|3 . (10)

The integration is performed over the velocities �c1, �c2 of the colliding pair and over the unit
vector �e = �e12 as introduced in equation (1). The unit step function �(x) guarantees that only
approaching particles collide. Approximating the velocity distribution function by the Maxwell
distribution, f̃ (�c) ≡ φ(c) = π−d/2 exp(−c2), and transforming the variables, �c1, �c2 → �C, �c12,
where �C ≡ (�c1 + �c2)/2 and �c12 ≡ �c1 − �c2, we can write

f̃ (�c1) f̃ (�c2) = φ(c12)φ(C) (11)

with

φ(c12) = 1

(2π)d/2
exp

(

−1

2
c2

12

)

(12)

φ(C) =
(

2

π

)d/2

exp
(−2C2

)

. (13)

Substituting the latter expressions into equation (10) and taking into account
∫

φ(C)d �C = 1,
we obtain µ2 for a two-dimensional gas:

µ2 = 1

4

(

1 − ε∗2) 2π

∫ ∞

g∗/vT

c12
1

2π
exp

(

−1

2
c2

12

)

dc12

∫ ϕ0

−ϕ0

c3
12 cos3 ϕ dϕ, (14)

with ϕ0 ≡ g∗/(vTc12), where we take into account that the integral in equation (10) vanishes
if the normal component of the impact velocity |�c12 · �e| = |c12 cos ϕ| < g∗/vT. Simple
calculations then yield the coefficient µ2 for general dimensions (d = 2, d = 3):

µ2 = Ad

√
2π

2
(1 − ε∗2)

(

1 +
g2

0 T0

2T

)

exp

(

− g2
0 T0

2T

)

, (15)

where A2 = 1 (see also [24]) and A3 = 2. In equation (15), T0 ≡ T (0) denotes the initial
temperature and g0 ≡ g∗/vT(0). Introducing the variable x = 2T/(T0g2

0) we obtain from
equation (7)

ẋ = −α
(

x3/2 + x1/2
)

e−1/x , (16)

α = Ad g0
(

1 − ε∗2
)

g2(σ )σn
√

πT0/2m. (17)

If at the initial stage of the temperature evolution vT(0) � g∗, i.e. g0 
 1, then x � 1.
Equation (16) reduces then to ẋ = −αx3/2, yielding Haff’s law (5) with

τH = α

g0

√
2

= 1

2

(

1 − ε∗2
)

g2(σ )σn

√

πT0

m
. (18)

For large time, i.e., for sufficiently small x , the general solution of equation (16) can be found
in the form of a series

x3/2e1/x

1 + x

[

1 +
3 + x

2(1 + x)
x +

15 + 10x + 3x2

4(1 + x)2
x2 + · · ·

]

= αt + C, (19)

where C is an integration constant. For large times, i.e., x 
 1, it simplifies to

x3/2e1/x = αt . (20)
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Figure 2. Granular temperature of a gas of N = 105 particles and critical velocity g∗ = 0.1.
Full curve: molecular dynamics, dashed curve: Haff’s law, equation (5), dash–dotted curve:
asymptotics, equation (21).

With the definition of Lambert’s W function [25], W (x) exp[W (x)] = x , we find the solution
of equation (20):

1

x
= −3

2
W

(

− 2

3(αt)2/3

)

, x = 2

g2
0

T

T0
. (21)

For large t , equation (21) may be approximated by

1

x
= 3

2

[

ln

(
3

2
(αt)2/3

)

+ ln ln

(
3

2
(αt)2/3

)

+ · · ·
]

(22)

which yields the asymptotics for t → ∞:

T (t) = g2
0

2

T0

log αt
, (23)

with the constants g0 and α defined above. The asymptotic temperature relaxation is much
slower as compared with the power law equation (5) (see figure 2) since at late times most of
the collisions occur elastically according to equation (3). Therefore, only collisions of particles
whose velocities belong to the high energy tail contribute to the decay of temperature. With
similar arguments, logarithmically slow cooling was also obtained for a system of electrically
charged particles [26]. The above temperature dependence is the same for two- and three-
dimensional gases, differing only through the pure number α.

Strictly speaking, equation (23) is only valid for infinite systems. For any finite
system the cooling process terminates when the total energy of the system drops below
0.5 (g∗/2)2 + 0.5 (g∗/2)2 = (g∗)2 /4, i.e., when the total energy of the system is insufficient to
afford the relative particle velocity g∗ which is necessary for a dissipative collision. This energy
corresponds to the temperature Tcrit = (g∗)2 /(4N), i.e. for our case (N = 105, g∗ = 0.1)
Tcrit = 2.5 × 10−8, or ln Tcrit ≈ −17.5. This value is far below the temperature reached in
the simulation3. Therefore, here the limited cooling due to finite number of particles is not
relevant.

3 Evidently the temperature does indeed decay to T < Tcrit : assume T = Tcrit + δ (δ � 0). As long as the particles
collide elastically, due to ergodicity in the course of time the system scans the full phase space volume which is
compatible with conservation of energy, momentum and angular momentum. This includes such configurations
where sufficient energy is concentrated in the pair of particles colliding next such that g � g∗, i.e. the next collision
occurs dissipatively. Consequently temperature decays until T � Tcrit .
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4. High energy tail of the distribution function

For granular gases of particles which collide with ε = constant the high energy tail of the
reduced distribution function does not obey a Maxwell distribution (∼ exp(−c2)) but decays as
exp(−ac) (for details see [4]). This behaviour can be understood if one notices that the number
of particles of the reduced velocity c = v/vT is determined by a balance of three processes:
(i) losses due to collisions of particles at velocity c (thus changing their velocity to some c′),
(ii) gains due to particles resulting at c after a collision and (iii) variations without collisions
due to decaying thermal velocity vT of a cooling gas, i.e. although the particle’s velocity v stays
the same, its reduced velocity c = v/vT changes due to temperature decay. For gases of elastic
particles process (iii) is irrelevant and the balance of the processes (i) and (ii) yields the Maxwell
distribution. For dissipative gases of particles which collide with ε = constant, process (ii) for
the high velocity tail may be neglected as compared to (i). Process (iii) causes in this case an
increase of the number of particles in the high velocity tail with c � 1. The resulting balance
of (i) and (iii) yields the steady-state exponential overpopulation of the high energy tail [4].

For the coefficient of restitution according to equation (3) the temperature decay is
logarithmically slow as compared with the power law for ε = constant. Therefore, the loss of
particles (process (i)) is not balanced any longer by process (iii) due to the extremely slow decay
of temperature; hence, we do not expect overpopulation of the tail, but rather underpopulation.
The depopulation of the tail will continue until the number of high velocity particles becomes
so small that process (ii) cannot be neglected any longer with respect to (i). This gain process
(ii) is most efficient for small velocities due to the elastic particle interaction for these velocities.
One might even suspect that there is a maximal velocity above which (practically) no particles
can be found.

5. Cluster formation

The spontaneous formation of clusters in a force-free cooling granular gas can be understood
from simple arguments [10]: consider density fluctuations in an otherwise homogeneous
granular gas. In denser regions the particles collide more frequently than in more dilute
regions; therefore, dense regions cool faster than dilute regions and the local pressure decays
in these colder regions. The resulting pressure gradient causes a flux of particles into the denser
region, which leads to further increase of the density. Hence, small fluctuations of the density
are enhanced which leads to the formation of clusters.

These arguments are certainly valid for the case ε = constant, but not necessarily for a
gas of viscoelastic particles with ε = εv(g): in the latter case collisions become less and less
dissipative since the velocities decrease over time in the cooling gas. Hence the question arises
whether clusters persist in granular gases of viscoelastic particles. The numerical investigation
of these gases reveals dissolution of clusters after long time [21]. However, at a certain
time the clusters grow to a size comparable with the size of the periodic system. From this
instant on the simulation becomes questionable due to the unphysical effect of the cluster
self-interaction via the periodic boundary conditions. To prove the dissolution of clusters
by means of molecular dynamics for a gas of viscoelastic particles without encountering the
above-mentioned unphysical effect, we need a system which is large enough to ensure that at
no time the cluster size reaches the system size. At the moment we are able to simulate systems
up to about N = 3 × 106 particles, which seems to be far below the necessary size. Therefore,
we use the simplified collision law, equation (3), which should exhibit similar features to a gas
of viscoelastic particles since for both limg→0 ε = 1. Figure 3 shows snapshots of a simulation
of N = 105 particles.
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Figure 3. Snapshots of a simulation (N = 105, ε∗ = 0.6, g∗ = 0.1, η = 0.1) after 0, 50, 100
(first row), 150, 200, 250 (second row), 500, 1000 and 5000 (last row) collisions per particle.
The corresponding fractions of dissipatively occurring collisions read (in the same order) 0.998,
6 × 10−3, 1.1 × 10−3, 5.1 × 10−4, 3 × 10−4, 2.8 × 10−4, 8.5 × 10−5, 2.6 × 10−5, 3.8 × 10−6.
The initial temperature T0 = 1 corresponds to the thermal velocity vT = √

2. Starting at a
homogeneous distribution we observe cluster formation up to a certain cluster size. At late times
the system returns to the homogeneous cooling state.

Starting from a uniform distribution density, inhomogeneities appear after a short period
of homogeneous cooling, and grow up to a certain typical size. The collision frequency in
dense regions is larger than in dilute regions, which leads to decreasing thermal velocity. In
the course of time more and more collisions inside the clusters occur with relative velocities
g < g∗, i.e., elastically. Therefore, the clusters dissolve. At late times the system returns to
the homogeneous cooling state.

Why do we not observe system spanning clusters as in the case of ε = constant? We
start the simulation at a temperature for which the thermal velocity

√
2T0/m is well above

g∗, i.e. the system has the properties of a granular gas with ε = constant. Therefore, clusters
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begin to form and grow due to the above-described pressure instability. At a certain time the
typical velocity inside the clusters falls below g∗; from this moment on the clusters start to
dissolve, i.e., this time determines the typical cluster size which is significantly smaller than
the system size for an appropriate choice of parameters. According to these arguments we
expect the dissolution of clusters in granular gases of viscoelastic particles not to be related to
the periodic boundary conditions.

6. Conclusion

We have investigated a granular gas of particles which collide by means of a stepwise coefficient
of restitution used to mimic collisions of viscoelastic particles. This simplified collision law
reflects the main feature of viscoelastic particles that collisions tend to occur elastically for
decreasing impact velocity. In such gases clustering takes place only as a transient process.
Using this collision model, clusters dissolve before they grow to system size. Hence, the model
allows us to investigate the total process without the drastic influence of boundary conditions.
The results support the previous findings [21] that clustering occurs only as a transient process
for realistic gases of viscoelastic particles.

The model investigated, equation (3), compromises between physical correctness
(viscoelastic collisions with ε(g) given by equation (2)) and numerical feasibility. Although
the two models have the same asymptotics, limg→0 ε = 1, they differ in an important point:
for g 
 g∗ viscoelastic particles collide almost elastically but not exactly. Therefore, our
result is not a rigorous proof for the dissolution of clusters in the long time behaviour of gases
of viscoelastic particles but a strong hint, supporting the linear stability analysis [20] and the
previous numerical results [21] where periodic boundary conditions affected the dynamics of
the gas.
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